
Journal of Power Sources 183 (2008) 55–61

Contents lists available at ScienceDirect

Journal of Power Sources

journa l homepage: www.e lsev ier .com/ locate / jpowsour

Electrochemical parameter identification—An efficient method

for fuel cell impedance characterisation

r ide
PI st
exci

erab
The u
han a
he me
lectri
e and
algori
ctra a
nt ov
Michael A. Danzer ∗, Eberhard P. Hofer
Albert-Einstein-Allee 41, 89081 Ulm, Germany

a r t i c l e i n f o

Article history:
Received 31 January 2008
Received in revised form 11 April 2008
Accepted 27 April 2008
Available online 4 May 2008

Keywords:
Fuel cell
Impedance
Parameter identification
Impedance spectroscopy

a b s t r a c t

Electrochemical paramete
for fuel cell impedances. E
and measurements of the
measurement time consid
impedance spectroscopy.
of the fuel cell operation t
an online application of t
describing the dynamic e
consists of a voltage sourc
by a hybrid optimisation
measured impedance spe
shows very good agreeme
1. Introduction

For both the development and the operation of fuel cells infor-
mation on the electrochemical behaviour and on the internal states
of the fuel cell stack is needed. The operator asks if the membrane is
sufficiently humidified, if the gas diffusion layer is flooded and how
losses can be minimised. The control engineer is interested in the
dynamics of the power source to apply dynamic load changes. The
developer wants to validate the quality of the membrane, the con-
tact, and charge transfer resistances. An approach which gives an
insight in the fuel cell stack is the analysis and identification of the
fuel cell impedance [1]. The impedance of a fuel cell incorporates
detailed information on the intrinsic loss factors, on the conductiv-
ity of the membrane, on the electrode processes, and kinetic losses.
As a consequence, an efficient and reliable characterisation method
for fuel cell impedances with short required measurement time
and little interference is of general interest to both, developers and
operators.

The standard characterisation procedure for electrochemical
systems is carried out in four steps: apply an electrical stimulus
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ntification (EPI) is a novel, application-oriented characterisation method
rictly works in the time domain, with a model of the fuel cell impedance
tation and the response in the time domain. This approach reduces the
ly in comparison to frequency domain measurements for electrochemical
se of a superimposed signal as system excitation leads to less interference
current interrupt. Short measurement time and little interference enable
thod during the operation of the fuel cell. A simple discrete-time model
cal behaviour of the fuel cell is depicted as an equivalent circuit which
the impedance as internal resistance. The model parameters are identified
thm using the sampled excitation and response signals. A comparison of
t various operation conditions with impedance models identified by EPI
er a wide frequency range and emphasizes the reliability of EPI.

© 2008 Elsevier B.V. All rights reserved.

to the analysed system, observe the response, generate a mathe-
matical impedance model or an equivalent circuit, and identify the
model parameters [2]. The importance of modelling as an integral
part of the investigation is emphasized [3]. Generally, the meth-
ods of characterising impedances are subdivided into frequency
methods and time domain methods.
Electrochemical impedance spectroscopy (EIS) is an established
frequency domain method. The approach of EIS is to measure
impedance by applying successively single-frequency currents
to the system and measuring the real and imaginary parts of
the resulting voltage at that single frequency [2]. Measuring the
frequency response yields an impedance spectrum which can
be modelled by an equivalent circuit, and identified by nonlin-
ear complex parameter identification. The prerequisites for good
impedance spectra, the Kramer–Kronig conditions, are linearity,
causality, stability, and finiteness of the examined system [4]. Con-
sequently, the recorded impedance spectrum of a nonlinear system,
as fuel cells are, is only valid in a neighbourhood of the operating
point. The advantage of EIS which is widely used for the characteri-
sation of fuel cell impedances [1,5–8] is that impedance models can
be identified with a high accuracy and reliability. The main short-
comings of EIS are the long measurement time and the expensive
measuring setup.

The most commonly used time domain method for the charac-
terisation of power sources, especially of fuel cells is the current
interrupt (CI) technique [9,10]. At CI the perturbation is an inter-
ruption of the current. The resulting transient voltage response
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of fmax = 10 kHz.
In general, the impedance of a PEMFC can be depicted as an

equivalent circuit of an ohmic resistance R� and two impedances
Z1 and Z2 for the two loops in the Nyquist plot. Whereby the firs
loop at low frequencies can primarily be assigned to kinetic losses
and the double layer, and the second loop at higher frequencies to
transport phenomena. The resulting fuel cell impedance is

ZFC(jω) = R� + Z1(jω) + Z2(jω) (1)
56 M.A. Danzer, E.P. Hofer / Journa

is observed. In theory, and with a low reliability in practice,
the ohmic contribution to the overall impedance can be seen
from the height of the rectangular step of the potential [9]. The
approach of impedance characterisation using time domain mea-
surements can be improved by transformation of the collected data
into frequency domain and subsequent analysis of the resulting
frequency-dependent impedance [11]. The advantages of CI in com-
parison with EIS are that CI needs less measurement time, and that
the perturbation can easily be realised with simple power elec-
tronics or just with a switch [10]. The main drawback is that CI
interferes strongly with the operation of the fuel cell. It should also
be noted that an impedance spectrum generated by this method
does, strictly speaking, not comply with the Kramer–Kronig con-
ditions. The spectrum is only valid in a neighbourhood of the
operating point, but the fuel cell current at CI is changed in between
two operating points.

The electrochemical parameter identification (EPI) presented
in this work is a model-based method for the characterisation
of fuel cell impedances which works strictly in the time domain.
Whereas Macdonald claims that “time-varying results are generally
Fourier- or Laplace-transformed into the frequency domain, yield-
ing a frequency-dependent impedance” [2], EPI takes the direct way
characterising the impedance in the time domain. Instead of trans-
forming the collected data into frequency domain, EPI transforms
the complex impedance model into time domain and identifies the
impedance parameters directly by using the time domain measure-
ments of the perturbation and the system response. For system
perturbation at EPI the fuel cell current is superimposed with a
short small signal sequence which is generated based on the sen-
sitivity of the impedance model parameters. A hybrid real-valued
optimisation algorithm identifies the parameters of the impedance
model. The advantages of EPI in comparison with EIS are the
considerably decreased measurement time and the fact that EPI
works with standard hardware, without the need of a frequency
analyser. In comparison with CI it is expected that EPI reaches a
higher accuracy with less interference to the operation of the fuel
cell.

2. Impedance characterisation

2.1. Contributions to the fuel cell impedance

Impedance spectra of fuel cell stacks are a superposition of var-

ious intrinsic loss factors and transient processes. Or in the words
of an electrochemist: “A multitude of fundamental microscopic
processes take place throughout the cell when it is electrically
stimulated and, in concert, lead to the overall electrical response”
[2]. These processes include the transport of electrons through the
conductors, the transport of protons through the electrolyte, the
transfer of electrons or ions at the electrode–electrolyte interfaces,
and kinetic losses. Measuring impedance spectra of fuel cell stacks
the electrical engineer observes resistive, capacitive and inductive
effects. Resistive effects can be assigned to the charge transfer and
ohmic voltage losses of electron and proton conduction. Capaci-
tive effects occur due to the double layers of electrode–electrolyte
interfaces. The dynamics of mass transport acts as a first-order
lag element. Inductive effects appear due to the inductance of the
cables.

Therefore, the purpose of an application-oriented impedance
characterisation of a fuel cell stack during operation cannot be to
reproduce the microscopic effects, especially not at very high or
very low frequencies. The purpose of the presented method is to
determine the essential properties and loss factors of the fuel cell
stack, their interrelations and their dependence on controllable
wer Sources 183 (2008) 55–61

Fig. 1. Impedance spectrum of a PEM fuel cell stack, five cells, A = 100 cm2 at �C = 3.33
and �A = 1.25, iFC = 0.8 A cm−2, TStack = 55 ◦C, TDP = 50 ◦C, pA = 1 barabs, pC = 1 barabs,
fmin = 0.5 Hz, solid symbols denote decades of frequency.

variables as humidification, temperature, pressure and current.
Thereby, it is virtually always assumed that the properties of the
electrode-material system are time-invariant [2].

2.2. Impedance model

The goal of impedance modelling is to find a model with a con-
cise mathematical structure which regards the dominant effects
and reflects the essential properties of the electrochemical sys-
tem. To enable an interpretation of the model parameters and to
guarantee a comparability of identified impedance spectra, the
impedance model should include a minimum number of parame-
ters and should yield a minimum error in between the model output
and the measurement.

Fig. 1 shows a typical impedance spectrum of a polymer elec-
trolyte fuel cell (PEMFC). It is the Nyquist plot of a five cell stack with
an active surface of 100 cm2, a commercially available membrane
electrode assembly with Pt/Ru and the gas diffusion layer SGL 10BB.
The spectrum was measured at a current density of 0.8 A cm−2 with
a minimum frequency of fmin = 0.5 Hz, and a maximum frequency
The intersection of the frequency response locus in Fig. 1 with
the real axis at ω → ∞ corresponds to the ohmic resistance R�. The
intersection of the frequency response locus with the real axis at
ω = 0 corresponds to the sum of resistances R� = R� + R1 + R2, where
R1 and R2 are the limit values of Z1 and Z2 for ω → 0. The diverg-
ing impedance for ω → ∞ mainly results from the inductance L of
the cables, which is not part of the fuel cell impedance. In the fuel
cell impedance model (2RC-model) depicted in Fig. 2, the losses
of the electron and proton conductance are described by an ohmic
resistance and the two loops of the impedance spectrum each by
an RC-circuit [3,12,13]. In the frequency domain the impedance of

Fig. 2. Model of the fuel cell impedance with voltage source and cable inductance.
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the 2RC-model in Fig. 2 is

Z2RC (jω) = R� + ZRC1 (jω) + ZRC2 (jω) = R� + R1

1 + jω �1
+ R2

1 + jω �2

(2)

with the time constants �1 = R1C1 and �2 = R2C2 of the two RC-
circuits.

This two time constants model has its limitations, e.g., when
one limiting process is diffusion-based, but it is sufficient for the
present introduction of the identification method. More complex
impedance models, e.g., with distributed time constants [14,15]
would presumably yield better fits to the impedance spectra but
shall not be regarded here because of the complexity of fractional
calculus.

2.3. Electrochemical parameter identification

The goal of EPI is to identify the parameters of the transformed
impedance model directly on basis of the time response of the
fuel cell to an excitation, instead of on basis of the impedance
spectrum. Basis of the method is that the time response of an appro-
priately perturbed fuel cell incorporates the same information on
the impedance of the system as the frequency response, so that the
impedance can be calculated from the perturbation and response
in the time domain [11].

The process flow of the electrochemical parameter identification
is composed of:

1. Excitation of the system.
2. Measurement of the fuel cell current and voltage.
3. Digital signal processing for noise reduction and offset adjust-

ment.
4. Parameter optimisation by minimising the error between the

measured and modelled system response.

The single steps will be discussed in the following sections.

2.4. Model transformation into time domain

The general prerequisite for the application of the electrochem-
ical parameter identification is the existence of an appropriate
model and the ability to transform this model, at least approxi-
mately, into time domain.
For the use in the time domain the equivalent circuit of the fuel
cell model comprises the impedance and a constant voltage source
(equilibrium voltage) U0 (Fig. 2). Thereby, the fuel cell impedance
acts as the internal resistance of the voltage source. Thus, the time
domain model incorporates both the loss factors and the source
terms of the fuel cell stack. For time domain measurements the
cable inductance can be neglected. In the time domain the model
can be expressed mathematically by real-valued, algebraic equa-
tions for Kirchhoff’s voltage law (3) and Ohm’s law (4) as well as
two ordinary differential equations (5) and (6) for the voltage drop
at the two RC-circuits:

UFC(t) = U0 − U�(t) − U1(t) − U2(t) (3)

U�(t) = R�IFC(t) (4)

�1
d
dt

U1(t) + U1(t) = R1IFC(t) (5)

�2
d
dt

U2(t) + U2(t) = R2IFC(t) (6)

The measured signals of the excitation IFC and the system
response UFC are sampled at a constant rate (sampling time T). And
wer Sources 183 (2008) 55–61 57

“since the world of electrochemistry is an analog one, the use of dig-
ital computation methods must be preceded by analog-to-digital
conversion ” [11]. Hence Eqs. (3)–(6) have to be discretised for the
application in the identification algorithm. The differential equa-
tions (5) and (6) are thereby transformed approximately into the
difference equations:

U1,k = f1(IFC,k, IFC,k−1, U1,k−1) (7)

and

U2,k = f2(IFC,k, IFC,k−1, U2,k−1) (8)

where k is the discrete time index. In the following, gathered val-
ues for the fuel cell current IFC,k and for the voltage UFC,k at the
discrete time steps t = kT are presented as the data vectors IFC and
UFC. The parameters which have to be identified are combined in
the parameter vector � = [R�R1R2C1C2U0]T.

Since the same impedance parts (resistances and capacitances)
are identified, EPI extracts the same information from the fuel cell
impedance as EIS does and additionally the voltage source of the
stack. Concerning the validity of the model it has to be stated that for
both the model in frequency and in time domain the structure of the
model can be used over the whole range of the IV-characteristics;
but the parameters are only valid in a neighbourhood of the oper-
ating point.

2.5. Excitation signal generation

As in EIS, the fuel cell current and voltage at an operating point
consist of a constant and a superimposed time-varying part:

IFC(t) = Idc + Iac(t) (9)

UFC(t) = Udc + Uac(t) (10)

At EPI the fuel cell current acts as the input signal and the fuel cell
voltage as the system response. Finally, the goal of the parameter
optimisation is to minimise the error:

e(�) = UFC − UFC,mod(�) (11)

between points in the measured data vector UFC and corresponding
points generated by the fuel cell model UFC,mod(�) for the given
input sequence IFC. Hence, the objective function J(�) is defined as
the sum of the squares of the residuals:

J(�) = eT (�)e(�) = ˙�(ek(�))2 (12)
In order to identify a parameter by minimising the objective
function the input signal has to excite the part of the system which
is described by this parameter. Or reverse, the parameter has to
have an influence on the model output and thereby on the objective
function at a defined input sequence. A measure of the influence of
a parameter is its sensitivity. Here, sensitivity describes the effect
of an arbitrary parameter variation of a single parameter on the
output function [16]. Thereby, the sensitivity analysis compares the
model output at nominal parameter values UFC,mod(�FC) with the
model output UFC,mod(�var) for a parameter variation 	�i of a single
parameter �i. Accordingly, for EPI the sensitivity of a parameter �i
is defined as

S(	�i) = eT (	�i)e(	�i) (13)

with

e(	�i) = UFC,mod(�FC) − UFC,mod(�var) (14)

The sensitivity of the parameters can be used to find the appro-
priate excitation signal [17].

In general, excitation signals can be any arbitrary function of
time [11]. But some constraints have to be regarded. On the one
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Fig. 3. Rectangular signal and discrete power density spectrum of the rectangular
signal at a sampling time of T = 1 ms.
hand it is crucial to keep the perturbation amplitude sufficiently
small in order to be able to neglect nonlinear effects [3]. On the
other hand the amplitude must not be too small to guarantee a
minimum signal to noise ratio of the system response. Appropriate
excitation signals are sinusoidal signals, step and rectangular, and
noise functions. A chirp signal is a special sinusoidal signal with a
linearly or exponentially time-dependent frequency ω(t):

xchirp(t) = A sin(ω(t)t). (15)

Regarding their power density spectra these signals differ signif-
icantly from each other. Figs. 3 and 4 show two potential excitation
signals u(t) and their discrete power density spectra Puu(f) at a sam-
pling time of T = 1 ms. Whereas the discrete power density of the
rectangular signal has a high peak at a low frequency, peaks with
exponentially decreasing height at increasing frequencies and in
between frequency ranges with a power density of zero, the expo-
nential chirp signal shows a more uniformly distributed power
density in the frequency range of the chirp signal. A combination
of both signals leads to a signal with stationary parts and a power

Fig. 4. Exponential chirp signal and discrete power density spectrum of the expo-
nential chirp signal at a sampling time of T = 1 ms.
wer Sources 183 (2008) 55–61

Fig. 5. Fuel cell current density as excitation signal, iamp = 0.01 A cm−2, pulse width
	T = 0.08 s, chirp frequencies fmin = 2 Hz, fmax = 50 Hz.

density always unequal to zero for all frequencies in the range of
the chirp signal.

These considerations together with the analysis of the sensitiv-
ity of the combined signal [17] lead to the appropriate excitation
current density signal in Fig. 5 for the examined fuel cell stack. It
has an alternating current signal amplitude of iamp = 0.01 A cm−2, a
pulse width of 0.08 s, a minimum chirp frequency of fmin = 2 Hz, and
a maximum chirp frequency of fmax = 50 Hz. The choice of the sig-
nal parameters as pulse width and frequencies are strongly related
to the expected time constants of the RC-circuits and thus on the
analysed fuel cell stack.

2.6. Parameter optimisation algorithm

The task of the optimisation algorithm is to extract the informa-
tion on the impedance which is incorporated in the excitation signal

and the system response, by identifying the optimal set of param-
eters which characterise the fuel cell impedance and the voltage
source. The optimal parameter vector �* minimises the real-valued
objective function (12). The search space of the parameters is con-
strained by a lower bound �lb and an upper bound �ub (see Table 1)
given by expert knowledge and physical constraints as positive val-
ues for resistances, capacitances, and time constants. The difficulty
and the challenge of determining the optimal parameter vector in
the time domain is referred to the fact that the objective function is
a multiminima function where beside the global minimum several
local minima may exist. Therefore a hybrid optimisation algorithm
consisting of a stochastic and a deterministic method is applied.
Stochastic methods are mostly better suited to find the global opti-
mum of multiminima functions, but on their own they show slow
convergence properties. Deterministic methods show fast conver-
gence properties, but often do not have the ability to overcome local
minima. A hybridisation provides the possibility to combine the
advantages of both types of methods [18]. The stochastic method
applied is an evolutionary algorithm [19,20] and the deterministic
method the downhill simplex method of Nelder and Mead [21].

Table 1
Nominal parameter vector �FC, boundaries of the search space: lower bound �lb and
upper bound �ub

�lb �FC �ub

R� (m�) 3 6.8 10
R1 (m�) 4 6.5 30
R2 (m�) 5 8.3 30
C1 (F) 1 3.6 20
C2 (F) 0.1 0.38 2
U0 (V) 4 4.2 6
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tion of the parameters.
If a single signal sequence as depicted in Figs. 7 and 8 is used

for the optimisation the measurement time equals the length of
the signal sequence Tm = 0.91 s. The calculation time of a standard
computer needed for the digital signal processing and the parame-
ter optimisation is Tc = 1.25 s. In case of a parallel optimisation of five
subsequent signal sequences the measurement time increases by a
factor of 5 to Tm = 4.55 s, the calculation time increases to Tc = 6.11 s.
The standard computer used is defined by the following software
and hardware features: Matlab 7.1, Windows XP, Intel Pentium M
1.6 GHz, 0.99 GB RAM.

For a verification of the identification process of EPI and a valida-
tion of the results, reference measurements at the same operation
conditions were taken in the frequency domain (Figs. 9 and 10) and
analysed using the electrochemical impedance spectroscopy. On
the basis of the impedance spectra the parameters of the impedance
model were identified and can now be compared directly with the
M.A. Danzer, E.P. Hofer / Journa

Fig. 6. Measurement setup and data processing of the EPI.

The evolutionary algorithm performs the task of the global
search. It is terminated when the region of attraction of the
global minimum is reached and passes its best parameter vec-
tor to the deterministic local search. In the hybrid algorithm the
Nelder–Mead method performs the task of the local search for
the final convergence towards the global minimum. Both parts of
the hybrid algorithm perform a constrained optimisation regarding
the bounds of the search space. Both are terminated by a maxi-
mum number of iterations to guarantee a maximum computing
time. Ultimately the convergence to the global minimum cannot be
proven, but repeated experiments have yielded reliable and repro-
ducible results.

To increase the accuracy and reliability of the electrochemical
parameter identification the method can be provided with redun-
dancy. For this purpose subsequent signal sequences (time-frames
of the signals) can be optimised independently. Finally the param-
eter vector with the lowest value of the objective function can
be selected or the optimised parameter vectors can be averaged.
This parallel optimisation of several signal sequences leads to an
increased measurement and calculation time. If the application is
critical in terms of time it is sufficient to optimise just one signal
sequence.

2.7. Hardware setup and digital signal processing

The hardware setup of the electrochemical parameter identifi-
cation (Fig. 6) consists of standard hardware components: a signal
generator for the excitation signal, a data logger for the input and
output signals, a processor for the parameter optimisation, and the
D/A and A/D converters for the transition between the analogue
and the discrete world. EPI works without the need of a frequency
analyser.

For a reliable parameter optimisation the input signal of the
system model should be as free of noise as possible. A noisy sig-

nal as input of the difference equation would otherwise lead to
a disturbed output signal and finally to shifted minima of the
objective function. Simple low-pass filtering could be problematic
if the frequency range of the noise overlaps with the frequency
range of the excitation signal. Therefore, the noise-free data of the
signal generator is used as input of the optimisation algorithm
instead of the measured fuel cell current at the electronic load.
To adjust the values of the signal generator to the measured val-
ues the offset is corrected by averaging and the gain (amplitude of
the superimposed small signal) is optimised using the golden sec-
tion optimisation algorithm [22] which is an efficient line search
algorithm.

3. Results

The electrochemical parameter identification was intensively
tested for various operation conditions (variation of pressure, tem-
perature, current density, humidification, hydrogen and oxygen
excess ratio) of the fuel cell stack. Figs. 7 and 8 show the fuel cell
response UFC(t) to the same input signal of Fig. 5, the first at a oxy-
gen excess ratio of �C = 5 and a hydrogen excess ratio of �A = 1.43,
wer Sources 183 (2008) 55–61 59

Fig. 7. Fuel cell stack voltage as system response to the excitation signal at �C = 5 and
�A = 1.43, PEM fuel cell stack, five cells, A = 100 cm2, constant operation conditions:
iFC = 0.5 A cm−2, TStack = 55 ◦C, TDP = 50 ◦C, pA = 1 barabs, pC = 1 barabs.

the second at �C = 2.5 and �A = 1.11. All other controllable variables
as temperature, humidification, current density and pressure are
kept constant. Figs. 7 and 8 additionally show the corresponding
model outputs UFC,mod(t) which are calculated using the optimised
parameter vector �*. The sampling time T of both signals is 1 ms.
The transient response to the current steps, the amplitude and the
increasing damping of the chirp signal, as well as the DC offset are
characteristic for the impedance of the examined fuel cell stack.
Together they incorporate sufficient information for the identifica-
according parameters of the time domain model.
To get an optical impression of the agreement of both iden-

tified models a virtual frequency response is calculated using

Fig. 8. Fuel cell stack voltage as system response to the excitation signal at �C = 2.5
and �A = 1.11, PEM fuel cell stack, five cells, A = 100 cm2, constant operation condi-
tions: iFC = 0.5 A cm−2, TStack = 55 ◦C, TDP = 50 ◦C, pA = 1 barabs, pC = 1 barabs.
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Fig. 9. Comparison of measured and modelled impedance spectra at �C = 5 and
2
�A = 1.43, PEM fuel cell stack, five cells, A = 100 cm , constant operation conditions:

iFC = 0.5 A cm−2, TStack = 55 ◦C, TDP = 50 ◦C, pA = 1 barabs, pC = 1 barabs, fmin = 0.5 Hz, solid
symbols denote decades of frequency.

Fig. 10. Comparison of measured and modelled impedance spectra at �C = 2.5 and
�A = 1.11, PEM fuel cell stack, five cells, A = 100 cm2, constant operation conditions:
iFC = 0.5 A cm−2, TStack = 55 ◦C, TDP = 50 ◦C, pA = 1 barabs, pC = 1 barabs, fmin = 0.5 Hz, solid
symbols denote decades of frequency.
the impedance parameters identified in the time domain. In
Figs. 9 and 10 the frequency responses of the impedance model of
both identified parameter vectors is plotted for the same frequency
range next to the measured impedance spectra.

It is obvious that the impedance has changed dramatically
between the different operation conditions. For both extremely dif-
ferent settings EPI was able to identify the impedance parameters.
Both Nyquist plots show that the impedance spectra ZEPI, with the
parameters identified in the time domain show a very good agree-
ment with the measured impedance spectra, especially for small
and intermediate frequencies (0.5 Hz to 0.5 kHz). For high frequen-
cies the virtual impedance spectra ZEPI slightly diverge from the
measured spectra which lead to an overestimation of the ohmic
resistances. The according values of the parameters and the cor-
responding values of the objective function are listed in Table 2.
Whereby the objective function of the impedances is defined as

J(�) = ˙�(gReR,k(�))2 + ˙�(gIeI,k(�))2 (16)

Table 2
Comparison of the identified fuel cell impedance parameters at different excess
ratios with corresponding values of the objective function

�C = 5, �A = 1.43 �C = 2.5, �A = 1.11

EIS EPI EIS EPI

R� (m�) 6.84 7.39 5.77 6.47
R1 (m�) 6.54 5.00 22.9 23.2
R2 (m�) 8.26 9.02 11.2 10.5
C1 (F) 3.61 5.28 3.19 3.13
C2 (F) 0.38 0.45 0.59 0.69
J(�) 6.7 e−6 1.6 e−5 1.7 e−5 2.7 e−5
wer Sources 183 (2008) 55–61

with the errors of the real and the imaginary part:

eR(�) = Re{ZFC(jω)} − Re{ZFC,mod(jω)} and
eI(�) = Im{ZFC(jω)} − Im{ZFC,mod(jω)} (17)

and the corresponding weight factors gR = 1 and gI = 2.

4. Conclusion

Electrochemical parameter identification is – in terms of mea-
surement time and costs for hardware – an efficient method for fuel
cell impedance characterisation, which works without additional
sensors and less interference to the fuel cell operation than other
time domain methods. EPI identifies the impedance parameters at
different operating conditions reliably and reproducibly. The accu-
racy of the identified parameters is slightly lower than when EIS
is applied. The membrane resistance is identified with an apprais-
able overestimation of about 5–10%. The biggest advantage of EPI is
the short measurement time of 1–5 s, in comparison to 3–10 min for
EIS, and the short calculation time of 1–7 s. Additionally, the waiting
time to reach a drift-free working point is drastically reduced. Since
only short signal sequences need to be analysed, EPI is applicable
to online operation. The user can poll information on the current
state of the fuel cell more often and during operation. In terms of
costs of hardware, EPI is cheaper and simpler, because it does not
need a frequency analyser.

As mentioned earlier, the main shortcoming is the simple
impedance model used. This needs to be addressed in future work
by applying more complex models to the identification proce-
dure. Another limitation is the applied frequency range. As shown
in the compared impedance spectra of Figs. 9 and 10 the mod-
els identified in time domain show good agreement with the
measured impedance spectra in the applied frequency range of
f = 0.5 Hz–10 kHz. Beyond this range no statements can be made.

For EPI a multitude of possible applications open up. The first
field of applications is that of analysis and diagnosis of fuel cells,
and especially the detection of malfunctions and errors. Continuous
information on the parameters and the change of these parameters
over time can be used to analyse the processes taking place in the
cell, e.g., reaction kinetics and kinetic hindrances, diffusion effects
as well as the water uptake of the membrane [7]. Another feature of
the online identification of fuel cell parameters is detailed statistics
and documentation, especially at lifetime experiments or long-

term observation on aging and degeneration effects. By recording
the single loss and source terms of the fuel cell model, the devel-
oper has much more information on the fuel cell than just recording
static voltage and current values. Furthermore, EPI enables the user
to monitor the fuel cell stack and single cells in parallel, due to
the fact that measuring multiple voltage signals does not require a
major additional effort.

The second field of applications is the balance of plant. The
parameters of the fuel cell model identified at regular intervals pro-
vide a deeper insight in the current state of the fuel cell stack. The
information on single loss terms opens the possibility of specific
and focused measures for minimising these losses and increasing
the efficiency of the fuel cell system. For example, the observa-
tion of an increasing transport resistance provides an indication
of flooding in the GDL which can be responded by purging or a
change of the gas flow to carry out liquid water. The second exam-
ple again is tightly linked to the crucial task of water management
of a fuel cell: the measurement of the membrane resistance by EPI
enables a closed loop for the humidification control and decreases
thereby the risk of membrane drying and flooding of the gas dif-
fusion layer. Finally, EPI can make a contribution to increase the
efficiency, durability, and dynamics of fuel cell systems.
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